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Exercise 9.4.5

An atomic (quantum mechanical) particle is confined inside a rectangular box of sides a, b, and c.
The particle is described by a wave function ψ that satisfies the Schrödinger wave equation

− ~2

2m
∇2ψ = Eψ.

The wave function is required to vanish at each surface of the box (but not to be identically zero).
This condition imposes constraints on the separation constants and therefore on the energy E.
What is the smallest value of E for which such a solution can be obtained?

ANS. E =
π2~2

2m

(
1

a2
+

1

b2
+

1

c2

)
.

Solution

Since the box is rectangular, the Laplacian operator will be expanded in Cartesian coordinates.

− ~2

2m

(
∂2ψ

∂x2
+
∂2ψ

∂y2
+
∂2ψ

∂z2

)
= Eψ,

0 < x < a

0 < y < b

0 < z < c

The boundary conditions associated with the Schrödinger equation are as follows.

ψ(0, y, z) = 0 ψ(x, 0, z) = 0 ψ(x, y, 0) = 0

ψ(a, y, z) = 0 ψ(x, b, z) = 0 ψ(x, y, c) = 0

Because the PDE and the boundary conditions are linear and homogeneous, the method of
separation of variables may be applied. Assume a product solution of the form
ψ(x, y, z) = X(x)Y (y)Z(z) and substitute it into the PDE

− ~2

2m

[
∂2

∂x2
[X(x)Y (y)Z(z)] +

∂2

∂y2
[X(x)Y (y)Z(z)] +

∂2

∂z2
[X(x)Y (y)Z(z)]

]
= E[X(x)Y (y)Z(z)]

and the boundary conditions.

ψ(0, y, z) = 0 → X(0)Y (y)Z(z) = 0 → X(0) = 0

ψ(a, y, z) = 0 → X(a)Y (y)Z(z) = 0 → X(a) = 0

ψ(x, 0, z) = 0 → X(x)Y (0)Z(z) = 0 → Y (0) = 0

ψ(x, b, z) = 0 → X(x)Y (b)Z(z) = 0 → Y (b) = 0

ψ(x, y, 0) = 0 → X(x)Y (y)Z(0) = 0 → Z(0) = 0

ψ(x, y, c) = 0 → X(x)Y (y)Z(c) = 0 → Z(c) = 0

Proceed to separate variables in the PDE.

− ~2

2m

[
X ′′(x)Y (y)Z(z) +X(x)Y ′′(y)Z(z) +X(x)Y (y)Z ′′(z)

]
= E[X(x)Y (y)Z(z)]

Multiply both sides by −2m/~2.

X ′′(x)Y (y)Z(z) +X(x)Y ′′(y)Z(z) +X(x)Y (y)Z ′′(z) = −2mE

~2
X(x)Y (y)Z(z)
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Divide both sides by X(x)Y (y)Z(z).

X ′′

X
+
Y ′′

Y
+
Z ′′

Z
= −2mE

~2

Bring the second and third terms to the right side.

X ′′

X︸︷︷︸
function of x

= −2mE

~2
− Y ′′

Y
− Z ′′

Z︸ ︷︷ ︸
function of y and z

The only way for a function of x to be equal to a function of y and z is if both are equal to a
constant λ.

X ′′

X
= −2mE

~2
− Y ′′

Y
− Z ′′

Z
= λ

The second of these equations is

−2mE

~2
− Y ′′

Y
− Z ′′

Z
= λ.

Bring the second term to the right side and bring λ to the left side.

−2mE

~2
− λ− Z ′′

Z︸ ︷︷ ︸
function of z

=
Y ′′

Y︸︷︷︸
function of y

The only way for a function of z to be equal to a function of y is if both are equal to another
constant µ.

−2mE

~2
− λ− Z ′′

Z
=
Y ′′

Y
= µ

In summary, by using the method of separation of variables, the PDE has reduced to three
ODEs—one in x, one in y, and one in z.

X ′′

X
= λ

Y ′′

Y
= µ

−2mE

~2
− λ− Z ′′

Z
= µ


Values of λ and µ that result in nontrivial solutions to the ODEs are called the eigenvalues, and
the nontrivial solutions themselves are called the eigenfunctions. The ODE for X will now be
solved. Suppose first that λ is positive: λ = α2.

X ′′ = α2X

The general solution is written in terms of hyperbolic sine and hyperbolic cosine.

X(x) = C1 coshαx+ C2 sinhαx

Apply the boundary conditions to determine C1 and C2.

X(0) = C1 = 0

X(a) = C1 coshαa+ C2 sinhαa = 0
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The second equation reduces to C2 sinhαa = 0. Since hyperbolic sine is not oscillatory, C2 must
be zero. The trivial solution X(x) = 0 results, which means there are no positive eigenvalues.
Suppose secondly that λ is zero: λ = 0.

X ′′ = 0

The general solution is obtained by integrating both sides with respect to x twice.

X(x) = C3x+ C4

Apply the boundary conditions to determine C3 and C4.

X(0) = C4 = 0

X(a) = C3a+ C4 = 0

The second equation reduces to C3 = 0. The trivial solution X(x) = 0 is obtained, which means
zero is not an eigenvalue. Suppose thirdly that λ is negative: λ = −β2.

X ′′ = −β2X

The general solution is written in terms of sine and cosine.

X(x) = C5 cosβx+ C6 sinβx

Apply the boundary conditions to determine C5 and C6.

X(0) = C5 = 0

X(a) = C5 cosβa+ C6 sinβa = 0

The second equation reduces to C6 sinβa = 0. To avoid getting the trivial solution, we insist that
C6 6= 0. Then

sinβa = 0

βa = kπ, k = 1, 2, . . .

βk =
kπ

a
, k = 1, 2, . . . .

Note that negative values of k are excluded because they lead to redundant values of λ. The
negative eigenvalues are λ = −k2π2/a2, and the eigenfunctions associated with them are

X(x) = C5 cosβx+ C6 sinβx

= C6 sinβx → Xk(x) = sin
kπx

a
.

The ODE for Y is the same as the one for X, and its boundary conditions are similar. Thus,
there are negative eigenvalues µ = −l2π2/b2 for l = 1, 2, . . ., and the eigenfunctions associated
with them are

Yl(x) = sin
lπy

b
.

The ODE for Z will now be solved.

−2mE

~2
− λ− Z ′′

Z
= µ, Z(0) = 0, Z(c) = 0
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Substitute the values for λ and µ.

−2mE

~2
+
k2π2

a2
− Z ′′

Z
= − l

2π2

b2

Z ′′ = −
(
2mE

~2
− k2π2

a2
− l2π2

b2

)
Z

If the value in parentheses is negative, then Z will be in terms of hyperbolic sine and hyperbolic
cosine. This will lead to the trivial solution as before. The same is true if the value in parentheses
is zero. We will assume then that it is positive.

Z(z) = C7 cos

√
2mE

~2
− k2π2

a2
− l2π2

b2
z + C8 sin

√
2mE

~2
− k2π2

a2
− l2π2

b2
z

Apply the boundary conditions to determine C7 and C8.

Z(0) = C7 = 0

Z(c) = C7 cos

√
2mE

~2
− k2π2

a2
− l2π2

b2
c+ C8 sin

√
2mE

~2
− k2π2

a2
− l2π2

b2
c = 0

The second equation reduces to

C8 sin

√
2mE

~2
− k2π2

a2
− l2π2

b2
c = 0.

To avoid getting the trivial solution, we insist that C8 6= 0. Then

sin

√
2mE

~2
− k2π2

a2
− l2π2

b2
c = 0√

2mE

~2
− k2π2

a2
− l2π2

b2
c = nπ, n = 1, 2, . . .√

2mE

~2
− k2π2

a2
− l2π2

b2
=
nπ

c
.

Square both sides and solve for the energy E.

2mE

~2
− k2π2

a2
− l2π2

b2
=
n2π2

c2

2mE

~2
=
k2π2

a2
+
l2π2

b2
+
n2π2

c2

= π2
(
k2

a2
+
l2

b2
+
n2

c2

)
Multiply both sides by ~2/(2m).

E =
π2~2

2m

(
k2

a2
+
l2

b2
+
n2

c2

)
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The eigenfunctions associated with E are

Z(z) = C7 cos

√
2mE

~2
− k2π2

a2
− l2π2

b2
z + C8 sin

√
2mE

~2
− k2π2

a2
− l2π2

b2
z

= C8 sin

√
2mE

~2
− k2π2

a2
− l2π2

b2
z → Zn(z) = sin

nπz

c
.

The smallest energy occurs for the smallest values of k, l, and n, namely k = 1, l = 1, and n = 1.
Therefore,

Eminimum =
π2~2

2m

(
1

a2
+

1

b2
+

1

c2

)
.

According to the principle of superposition, the general solution for the wave function is a linear
combination of the eigenfunctions over all values of k, l, and n.

ψ(x, y, z) =
∞∑
k=1

∞∑
l=1

∞∑
n=1

Bkln sin
kπx

a
sin

lπy

b
sin

nπz

c
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